banner



Thallium Has Two Stable Isotopes

Nuclides with atomic number of 81 but with different mass numbers

Main isotopes of thallium(81Tl)
Iso­tope Decay
abun­dance half-life (t 1/ii) mode pro­duct
203Tl 29.5% stable
204Tl syn 3.78 y β 204Lead
ε 204Hg
205Tl 70.v% stable
Standard diminutive weight A r°(Tl)
  • [ 204.382, 204.385]
  • 204.38±0.01 (abridged)[1] [ii]

Thallium (81Tl) has 41 isotopes with atomic masses that range from 176 to 216. 203Tl and 205Tl are the only stable isotopes and 204Tl is the most stable radioisotope with a one-half-life of 3.78 years. 207Tl, with a one-half-life of iv.77 minutes, has the longest half-life of naturally occurring Tl radioisotopes. All isotopes of thallium are either radioactive or observationally stable, meaning that they are predicted to be radioactive simply no actual decay has been observed.

Thallium-202 (half-life 12.23 days) can exist made in a cyclotron[three] while thallium-204 (half-life iii.78 years) is made past the neutron activation of stable thallium in a nuclear reactor.[four]

In the fully ionized state, the isotope 205Tl becomes beta-radioactive, decomposable to 205Lead,[5] but 203Tl remains stable.

205Tl is the decay product of bismuth-209, an isotope that was once thought to be stable merely is now known to undergo alpha decay with an extremely long half life of 2.01×1019 y.[6] 205Tl is at the terminate of the neptunium series decay concatenation.

List of isotopes [edit]

Nuclide[7]
[n ane]
Historic
name
Z Due north Isotopic mass (Da) [eight]
[northward 2] [n three]
Half-life
[n 4]
Decay
fashion
[north v]
Daughter
isotope
[n 6]
Spin and
parity
[n 7] [n 4]
Natural abundance (mole fraction)
Excitation energy[n 4] Normal proportion Range of variation
176Tl 81 95 176.00059(21)# 5.2(+30−14) ms (3−, 4−, 5−)
177Tl 81 96 176.996427(27) 18(5) ms p 176Hg (i/2+)
α (rare) 173Au
177mTl 807(18) keV 230(40) μs p 176Hg (11/ii−)
α 173Au
178Tl 81 97 177.99490(12)# 255(10) ms α 174Au
p (rare) 177Hg
179Tl 81 98 178.99109(5) 270(30) ms α 175Au (1/2+)
p (rare) 178Hg
179mTl 860(30)# keV 1.threescore(xvi) ms α 175Au (9/2−)
IT (rare) 179Tl
180Tl 81 99 179.98991(xiii)# i.v(2) south α (75%) 176Au
β+ (25%) 180Hg
EC, fission (10−4%) 100Ru, 80Kr [ix]
181Tl 81 100 180.986257(ten) three.two(3) southward α 177Au 1/2+#
β+ 181Hg
181mTl 857(29) keV one.vii(four) ms α 177Au ix/2−#
β+ 181Hg
182Tl 81 101 181.98567(8) two.0(3) s β+ (96%) 182Hg 2−#
α (4%) 178Au
182m1Tl 100(100)# keV ii.9(5) s α 178Au (seven+)
β+ (rare) 182Hg
182m2Tl 600(140)# keV 10−
183Tl 81 102 182.982193(10) half dozen.ix(seven) s β+ (98%) 183Hg i/ii+#
α (two%) 179Au
183m1Tl 630(17) keV 53.3(3) ms IT (99.99%) 183Tl 9/2−#
α (.01%) 179Au
183m2Tl 976.viii(three) keV 1.48(10) μs (13/2+)
184Tl 81 103 183.98187(v) ix.7(6) s β+ 184Hg 2−#
184m1Tl 100(100)# keV ten# s β+ (97.ix%) 184Hg 7+#
α (2.1%) 180Au
184m2Tl 500(140)# keV 47.1 ms Information technology (99.911%) (10−)
α (.089%) 180Au
185Tl 81 104 184.97879(6) 19.5(5) s α 181Au ane/ii+#
β+ 185Hg
185mTl 452.8(twenty) keV 1.93(8) s Information technology (99.99%) 185Tl ix/2−#
α (.01%) 181Au
β+ 185Hg
186Tl 81 105 185.97833(20) 40# s β+ 186Hg (2−)
α (.006%) 182Au
186m1Tl 320(180) keV 27.v(ten) s β+ 186Hg (7+)
186m2Tl 690(180) keV ii.9(2) due south (ten−)
187Tl 81 106 186.975906(ix) ~51 s β+ 187Hg (one/two+)
α (rare) 183Au
187mTl 335(3) keV 15.60(12) s α 183Au (nine/2−)
IT 187Tl
β+ 187Hg
188Tl 81 107 187.97601(4) 71(two) due south β+ 188Hg (2−)
188m1Tl 40(30) keV 71(1) south β+ 188Hg (seven+)
188m2Tl 310(30) keV 41(4) ms (nine−)
189Tl 81 108 188.973588(12) 2.3(two) min β+ 189Hg (1/ii+)
189mTl 257.6(13) keV 1.four(1) min β+ (96%) 189Hg (9/2−)
IT (4%) 189Tl
190Tl 81 109 189.97388(5) two.6(three) min β+ 190Hg 2(−)
190m1Tl 130(xc)# keV 3.7(three) min β+ 190Hg 7(+#)
190m2Tl 290(70)# keV 750(40) μs (8−)
190m3Tl 410(lxx)# keV >i μs ix−
191Tl 81 110 190.971786(8) 20# min β+ 191Hg (1/2+)
191mTl 297(seven) keV v.22(sixteen) min β+ 191Hg 9/two(−)
192Tl 81 111 191.97223(3) 9.6(4) min β+ 192Hg (2−)
192m1Tl 160(50) keV 10.eight(2) min β+ 192Hg (vii+)
192m2Tl 407(54) keV 296(5) ns (viii−)
193Tl 81 112 192.97067(12) 21.6(8) min β+ 193Hg 1/2(+#)
193mTl 369(four) keV 2.11(15) min IT (75%) 193Tl ix/2−
β+ (25%) 193Hg
194Tl 81 113 193.97120(xv) 33.0(five) min β+ 194Hg ii−
α (10−vii%) 190Au
194mTl 300(200)# keV 32.8(ii) min β+ 194Hg (7+)
195Tl 81 114 194.969774(15) 1.16(5) h β+ 195Hg 1/ii+
195mTl 482.63(17) keV 3.6(four) s It 195Tl 9/2−
196Tl 81 115 195.970481(13) 1.84(three) h β+ 196Hg 2−
196mTl 394.ii(5) keV i.41(two) h β+ (95.5%) 196Hg (7+)
IT (4.5%) 196Tl
197Tl 81 116 196.969575(18) 2.84(4) h β+ 197Hg 1/2+
197mTl 608.22(8) keV 540(ten) ms IT 197Tl 9/two−
198Tl 81 117 197.97048(nine) 5.3(five) h β+ 198Hg 2−
198m1Tl 543.5(4) keV 1.87(3) h β+ (54%) 198Hg 7+
IT (46%) 198Tl
198m2Tl 687.ii(5) keV 150(forty) ns (5+)
198m3Tl 742.3(4) keV 32.1(ten) ms (10−)#
199Tl 81 118 198.96988(three) 7.42(8) h β+ 199Hg ane/two+
199mTl 749.vii(iii) keV 28.4(2) ms IT 199Tl 9/2−
200Tl 81 119 199.970963(half dozen) 26.1(i) h β+ 200Hg two−
200m1Tl 753.six(2) keV 34.iii(10) ms IT 200Tl 7+
200m2Tl 762.0(ii) keV 0.33(v) μs 5+
201Tl[n 8] 81 120 200.970819(sixteen) 72.912(17) h EC 201Hg 1/ii+
201mTl 919.fifty(9) keV ii.035(vii) ms Information technology 201Tl (9/two−)
202Tl 81 121 201.972106(16) 12.23(2) d β+ 202Hg 2−
202mTl 950.xix(10) keV 572(7) μs 7+
203Tl 81 122 202.9723442(xiv) Observationally Stable [n nine] 1/two+ 0.2952(1) 0.29494–0.29528
203mTl 3400(300) keV 7.vii(v) μs (25/ii+)
204Tl 81 123 203.9738635(13) 3.78(two) y β (97.1%) 204Pb 2−
EC (ii.ix%) 204Hg
204m1Tl 1104.0(4) keV 63(2) μs (7)+
204m2Tl 2500(500) keV 2.vi(2) μs (12−)
204m3Tl 3500(500) keV ane.half-dozen(ii) μs (20+)
205Tl[n 10] 81 124 204.9744275(14) Observationally Stable [due north xi] ane/2+ 0.7048(1) 0.70472–0.70506
205m1Tl 3290.63(17) keV two.6(2) μs 25/ii+
205m2Tl 4835.6(fifteen) keV 235(10) ns (35/2–)
206Tl Radium Eastward 81 125 205.9761103(15) 4.200(17) min β 206Pb 0− Trace[n 12]
206mTl 2643.11(xix) keV 3.74(three) min IT 206Tl (12–)
207Tl Actinium C 81 126 206.977419(half-dozen) iv.77(two) min β 207Lead i/2+ Trace[northward 13]
207mTl 1348.1(iii) keV 1.33(eleven) s IT (99.9%) 207Tl 11/two–
β (.1%) 207Pb
208Tl Thorium C" 81 127 207.9820187(21) 3.053(4) min β 208Pb five+ Trace[due north 14]
209Tl 81 128 208.985359(8) ii.161(vii) min β 209Atomic number 82 i/two+ Trace[n 15]
210Tl Radium C″ 81 129 209.990074(12) one.thirty(3) min β (99.991%) 210Atomic number 82 (5+)# Trace[due north 12]
β, northward (.009%) 209Atomic number 82
211Tl 81 130 210.993480(50) lxxx(16) s β (97.8%) 211Pb 1/2+
β, n (ii.2%) 210Pb
212Tl 81 131 211.998340(220)# 31(viii) s β (98.2%) 212Atomic number 82 (v+)
β, n (one.8%) 211Pb
213Tl 81 132 213.001915(29) 24(4) s β (92.4%) 213Atomic number 82 1/2+
β, northward (seven.6%) 212Pb
214Tl 81 133 214.006940(210)# xi(2) southward β (66%) 214Lead 5+#
β, n (34%) 213Pb
215Tl 81 134 215.010640(320)# x(4) s β (95.4%) 215Pb i/2+#
β, northward (4.half-dozen%) 214Atomic number 82
216Tl 81 135 216.015800(320)# half-dozen(3) south β 216Pb 5+#
β, n (<xi.5%) 215Pb
This table header & footer:
  1. ^ thousandTl – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding concluding digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are non purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
  6. ^ Assuming symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ Main isotope used in scintigraphy
  9. ^ Believed to undergo α disuse to 199Au
  10. ^ Concluding decay product of 4n+1 decay concatenation (the Neptunium series)
  11. ^ Believed to undergo α decay to 201Au
  12. ^ a b Intermediate decay product of 238U
  13. ^ Intermediate disuse product of 235U
  14. ^ Intermediate decay product of 232Th
  15. ^ Intermediate decay product of 237Np

Thallium-201 [edit]

Thallium-201 (201Tl) is a synthetic radioisotope of thallium. It has a half-life of 73 hours and decays by electron capture, emitting 10-rays (~70–80 keV), and photons of 135 and 167 keV in ten% full abundance.[10] Thallium-201 is synthesized by the neutron activation of stable thallium in a nuclear reactor,[10] [eleven] or by the 203Tl(p, 3n)201Atomic number 82 nuclear reaction in cyclotrons, as 201Atomic number 82 naturally decays to 201Tl afterwards.[12] It is a radiopharmaceutical, as information technology has skillful imaging characteristics without excessive patient radiation dose. It is the most popular isotope used for thallium nuclear cardiac stress tests.[13]

References [edit]

  1. ^ "Standard Diminutive Weights: Thallium". CIAAW. 2009.
  2. ^ Meija, Juris; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Practical Chemical science. 88 (iii): 265–91. doi:10.1515/pac-2015-0305.
  3. ^ "Thallium Enquiry". doe.gov. Department of Energy. Archived from the original on 2006-12-09. Retrieved 23 March 2018.
  4. ^ Manual for reactor produced radioisotopes from the International Diminutive Energy Agency
  5. ^ "Bound-state beta decay of highly ionized atoms" (PDF). Archived from the original (PDF) on Oct 29, 2013. Retrieved June nine, 2013.
  6. ^ Marcillac, P.; Coron, North.; Dambier, G.; et al. (2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth". Nature. 422 (6934): 876–878. Bibcode:2003Natur.422..876D. doi:10.1038/nature01541. PMID 12712201. S2CID 4415582.
  7. ^ Half-life, decay way, nuclear spin, and isotopic composition is sourced in:
    Audi, G.; Kondev, F. One thousand.; Wang, M.; Huang, West. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:x.1088/1674-1137/41/three/030001.
  8. ^ Wang, One thousand.; Audi, K.; Kondev, F. Thousand.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1–030003-442. doi:10.1088/1674-1137/41/three/030003.
  9. ^ Reich, E. S. (2010). "Mercury serves up a nuclear surprise: a new type of fission". Scientific American . Retrieved 12 May 2011.
  10. ^ a b Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The Due northUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: three–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  11. ^ "Manual for reactor produced radioisotopes" (PDF). International Atomic Energy Agency. 2003. Archived (PDF) from the original on 2011-05-21. Retrieved 2010-05-13 .
  12. ^ Cyclotron Produced Radionuclides: Principles and Do (PDF). International Atomic Energy Agency. 2008. ISBN9789201002082 . Retrieved 2022-07-01 .
  13. ^ Maddahi, Jamshid; Berman, Daniel (2001). "Detection, Evaluation, and Hazard Stratification of Coronary Artery Illness by Thallium-201 Myocardial Perfusion Scintigraphy 155". Cardiac SPECT imaging (2nd ed.). Lippincott Williams & Wilkins. pp. 155–178. ISBN978-0-7817-2007-6. Archived from the original on 2017-02-22. Retrieved 2016-09-26 .
  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard diminutive masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael East. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Study)". Pure and Practical Chemical science. 78 (xi): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Practical Chemistry. xix October 2005.
  • Half-life, spin, and isomer data selected from the following sources.
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay backdrop", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
    • National Nuclear Information Heart. "NuDat 2.x database". Brookhaven National Laboratory.
    • Holden, Norman Eastward. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN978-0-8493-0485-9.

Thallium Has Two Stable Isotopes,

Source: https://en.wikipedia.org/wiki/Isotopes_of_thallium

Posted by: mcguiganselse2000.blogspot.com

0 Response to "Thallium Has Two Stable Isotopes"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel